
Building Web-based Infrastructures for Smart
Meters

Andreas Kamilaris1, Vlad Trifa2, and Dominique Guinard2

1University of Cyprus, Nicosia, Cyprus
2ETH Zurich and SAP Research, Switzerland

Abstract. Smart Meters have been massively deployed recently, in or-
der to provide energy awareness to people, helping them reduce their elec-
tricity footprint. We propose a Web-based infrastructure for integrating
Smart Meters in future houses, providing high interoperability and scal-
ability. We show that, by reusing the core principles of the modern Web
architecture, we can build flexible applications on top of heterogeneous
Smart Meters with little effort and acceptable performance.

1 Introduction

Sustainability and energy conservation has become a major challenge in the
world today with tremendous economic, political, and environmental implica-
tions. Increasing awareness about our energy consumption is an important fac-
tor in order to overall reduce electrical consumption. According to Google1,
consumers can save 5-15% on their electricity usage when they can visualize
their energy consumption in real time.

In the latest years, Smart Meters have been gaining a certain popularity.
Smart Meters, are wireless devices that measure in real-time the energy con-
sumption of various electrical devices and control their operation. It is planned
that every home in Britain will be equipped with Smart Meters by the end of
20202.

Traditional Smart Meters offer a house-level granularity, where only the whole
house energy consumption can be visualized. As the technology becomes more
advanced, monitoring the energy consumption of each electrical appliance be-
comes possible. However, a common standard for collecting energy consumption
from several devices, manufactured by various constructors, is virtually inexis-
tent. To void this gap, we propose here a simple infrastructure for connecting
heterogeneous Smart Meters, which leverages the existing Web infrastructure.
This infrastructure builds upon our previous work in building the Web of Things
[2]. The core idea is to reuse the popular and wide-spread Web standards to inter-
connect embedded devices, and apply these principles to build an programmable
ecosystem of Smart Meters. This will facilitate significantly the prototyping and
development of applications that can contribute to energy reduction by raising
the awareness about our own energy by releasing this information into the Web.
1 http://www.google.org/powermeter/sgtestimony.html
2 http://news.bbc.co.uk/2/hi/business/8042716.stm

2 Kamilaris et al.

2 Web-enabling Smart Meters

We propose a Web-oriented approach that enables Smart Meters to speak the
same language as any other resource on the Web. This means we utilize HTTP
to develop an open environment of hardware and software for energy monitor-
ing. The rationale of using the Web as application layer is its many features
that would be adapted to such a task, in particular its ubiquity and scalability.
This is done by using the REpresentational State Transfer (REST) [1] as a set
of constraints to make Smart Meters an integral part of the Web. REST is the
architectural style behind HTTP and advocates in providing Web Services and
data modeled as resources, unambiguously identified by unique resource iden-
tifiers (URI). Resources can be manipulated through the four common verbs
specified in the HTTP standard: GET is used to retrieve a representation of
a resource, POST alters the state of resources, PUT represents an insert or
update, and DELETE is used to remove resources. Web services are a viable
mechanism for use in embedded devices and Smart Building deployments [3, 4].

Hereafter, we identify the challenges to consider, for Web-enabling Smart
Meters. Our work relies on the RESTful gateways described in [2], to bridge
proprietary Smart Meters with the Web. Gateways can be bypassed by em-
bedding a RESTful Web server directly on the Smart Meters, but where the
Web-enablement takes place has no influence on the system proposed here, as it
is fully transparent thanks to the properties of the HTTP protocol.

2.1 Discovery

HTTP does not have a mechanism for device discovery, because discovery in
REST is done by following links. Therefore, we propose a simple process for
discovering RESTful Smart Meters that aren’t linked. Fig. 1 shows the general
message interaction pattern followed at the discovery procedure.

When the Smart Meter is powered on, it will broadcast periodically a HELLO
message (UDP broadcast on the local network if connected through Ethernet,
or radio broadcast if the meter uses Bluetooth or ZigBee). When a gateway
receives this HELLO message, it will acknowledge it and ”bind” the gateway with
the Smart Meter that generated it. Then, the meter responds with a message
that contains the device description information and/or a description URL. The
URL points to a Web page where a description of the resources offered by that
particular meter can be found (can be either on the device itself or on the
manufacturer’s Website). The gateway receives this message, parses the contents
of the URL and exposes the functions offered by the Smart Meter on the Internet.

2.2 Description

As mentioned earlier, the URL sent by the Smart Meter points to a page that
contains a machine-readable description of the resources offered by the device.
These resources can be the current electricity consumption measured (Watts), to-
tal consumption over a time range (kWh), remote control of electrical appliances

The Web of Smart Meters 3

Fig. 1. Smart Meter Discovery Procedure.

(switch on/off the device attached to the meter), etc. To achieve interoperabil-
ity with heterogeneous devices, we emphasized on a standard resource descrip-
tion language, and opted for Web Application Description Language (WADL3).
WADL is an XML-based file format that provides a machine-readable descrip-
tion of HTTP-based web applications, particularly useful for describing RESTful
Web Services.

2.3 Eventing

Energy measurements from Smart Meters can be filtered according to their im-
portance and natures. These events can indicate simple occurrences such as turn-
ing on/off of an electrical appliance or more urgent incidents such as electricity
leakage or fire. Gateways can constitute the backbone of a scalable, resource-
oriented eventing infrastructure to efficiently disseminate events to interested
entities. Notifications rely topic-based publish/subscribe mechanisms through
Web push techniques. Any computing device that runs a Web server can be a
subscriber that is notified through POST requests. This technique is called Web
Hooks4, which are event notifications via HTTP callbacks.

2.4 Data Collection and Exploitation

Gathering data produced by Smart Meters into a central location is necessary to
transform it into useful information about electricity usage patterns of people,
neighborhoods, cities or even countries. Open access to this information is a key
enabler to increase awareness about our own energy usage. Home occupants will
be able to compare their current electricity footprint over months and correlate
their behavior with energy and money savings. Enabling direct access to this
data through a Web-based RESTful API, will make very simple to integrate
this data with existing Web applications, in particular social networks such as
Facebook and Twitter to further involve users into sharing and comparing their
energy consumption with their friends and relatives.
3 https://wadl.dev.java.net/
4 http://www.webhooks.org/

4 Kamilaris et al.

3 Implementation

Our RESTful gateway is composed of four principal layers: the device layer is
responsible for the discovery and control of Smart Meters, the control layer is the
main processing unit of the system that contains the logic of the application,
the eventing layer creates a simple, topic-based publish/subscribe infrastruc-
ture to support eventing, employing push technology and the presentation layer
generates dynamically representations of the connected Smart Meters and their
corresponding resources to the Web, enabling uniform interaction with them
over a RESTful interface. The gateway is implemented in Java.

We have simulated Smart Meters using Tmote Sky sensor motes running
TinyOS. Each mote emulated an actual Smart Meter that can stream the energy
consumption of the electrical appliance plugged into it and can switch it on/off.
The motes are discovered by the gateway using the mechanism described in
Section 2.1. We uploaded on a Web page a WADL file that describes their
resources. At runtime, the gateway will aggregate the energy consumption data of
the motes, and this data is available as JSON documents, updated continuously.

3.1 Web Mashups

Mashups are Web-based resources that include content and application function-
ality through reuse and composition of existing resources. The uniform, RESTful
interface of our gateway, facilitates the development of smart applications that
exploit Smart Meters functionality, from people with very little programming
experience, in any language that supports HTTP such as Perl, Php, JavaScript
etc. When devices are exposed as Web resources, monitoring rules can be imple-
mented in HTTP, and as an example, we show here a simple rule implemented
using a shell script:

function check {
if [$? -eq 1] ; then

curl -d "interval=1&iterations=1200"
-X POST localhost:8080/OfficeLaptop/Electricity/Streaming/

fi
}
curl -s -X GET localhost:8080/OfficeLaptop/State/ $1
check;

This rule checks the state of the OfficeLaptop and, if it is switched on, then
it automatically performs streaming of its electrical consumption every second
(interval=1), for the next 20 minutes (iterations=1200).

To further illustrate the semantics of Web-enabling Smart Meters, we have
adapted the Energie Visible5 project to work with our simulated devices, as
shown in Fig. 2. As Energie Visible polls continuously data from a RESTful
server, we simply need to point it to our gateway, and it works directly as long
5 http://www.webofthings.com/energievisible

The Web of Smart Meters 5

as devices offer their data using the correct JSON syntax. Energie Visible is a
mashup developed by Google Web Toolkit that plots sensor data in real-time
from energy meters, and illustrates how user interaction with energy data can
be simply developed on top of a Web interface.

Fig. 2. The user interface of Energie visible. The energy consumption of electrical
appliances is shown in real-time.

4 Evaluation

We have performed a preliminary evaluation of our approach. In the first exper-
iment, we measured the time required by the discovery procedure, that is how
long it takes for the gateway to discover a varying number of Smart Meters. We
performed the experiment six times for each number of sensor motes. The results
are shown in Fig. 3 (left). As shown, even with 16 meters operating concurrently,
all the devices are discovered within 15 seconds, which is enough especially as
this procedure happens only once for each device installed. Besides, in a typical
home, there are rarely more than 16 electrical devices operating.

In the second experiment, we tested the gateway in an eventing scenario.
Each mote was sending its energy consumption data once per second to the
gateway. We then placed a second gateway on the same LAN which subscribed
at the first gateway for energy events. Whenever a new energy message was sent
by a sensor mote, the second gateway started a timer (t0, which is the event
generation time). The timer was stopped when the second gateway received the
notification from the first gateway about the same event (t1). Therefore the time
delay (td = t1−t0) is the time needed for the first gateway to process and forward
events, and is shown in Fig. 3 (right), for a variable number of Smart Meters
operating simultaneously.

6 Kamilaris et al.

0

2

4

6

8

10

12

14

16

18

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sensor Mote Number

Ti
m

e
(s

ec
on

ds
)

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Events per Second

M
ea

n
Pu

sh
 T

im
e

(m
se

c)

Fig. 3. Smart Meters Discovery Execution Time (Left). Eventing Push Performance
(Right).

From the graph, we can see that the gateway performed quite well with a
reasonable workload. Even when the gateway received more than 10 messages
per second, the event processing and forwarding time was lower than 60 ms to
notify subscribers about the energy data. This is largely sufficient when one
considers than most smart metering scenarios at a home scale will rarely require
gateways to process more than 10 messages per second.

5 Conclusion and Future Work

In this paper, we have shown how the core principles of the modern Web ar-
chitecture can be exploited to build a scalable infrastructure to support Smart
Meters into future houses and buildings. We have illustrated how the uniform
and standard Web protocols, can simplify the development of applications that
raise awareness about our own energy consumption patterns. We have also shown
that the performance of our approach is largely sufficient for scenarios that con-
sider a considerable number of devices. Our future work targets larger scenarios
of collecting data from multiple Smart Meters and RESTful gateways, real-time
analysis of energy and actual integration of energy data with social networks.

References

1. R. T. Fielding. Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, University of California, Irvine, Irvine, California, 2000.

2. D. Guinard and V. Trifa. Towards the web of things: Web mashups for embedded de-
vices. In Workshop on Mashups, Enterprise Mashups and Lightweight Composition
on the Web, in Proc. of WWW Conference, Madrid, Spain, 2009.

3. L. Schor, P. Sommer, and R. Wattenhofer. Towards a Zero-Configuration Wireless
Sensor Network Architecture for Smart Buildings. In First ACM Workshop On
Embedded Sensing Systems For Energy-Efficiency In Buildings (BuildSys), Berkeley,
California, USA, November 2009.

4. D. Yazar and A. Dunkels. Efficient application integration in ip-based sensor net-
work. In Proc. of the First ACM Workshop On Embedded Sensing Systems For
Energy-Efficiency In Buildings (BuildSys), at SenSys09, 2009.

